Superregenerative receivers are characterised by their high sensitivity. The purpose of this experiment is to deter-mine whether they are also suitable for short-wave radio. Superregenerative receivers are relatively easy to build. You start by building a RF oscillator for the desired frequency. The only difference between a superregenerative receiver and an oscillator is in the base circuit. Instead of using a voltage divider, here we use a single, relatively high-resistance base resistor (100 kΩ to 1MΩ).
Superregenerative oscillation occurs when the amplitude of the oscillation is sufficient to cause a strong negative charge to be applied repeatedly to the base. If the regeneration frequency is audible, adjust the values of the resistors and capacitors until it lies somewhere above 20 kHz. The optimum setting is when you hear a strong hissing sound. The subsequent audio amplifier should have a low upper cutoff frequency to strongly attenuate the regeneration signal at its output while allowing signals in the audio band to pass through. This experimental circuit uses two transistors. A Walkman headphone with two 32-Ω earphones forms a suitable output device
One of the major advantages of a superregenerative receiver is that weak and strong stations generate the same audio level, with the only difference being in the signal to noise ratio. That makes a volume control entirely unnecessary. However, there is also a specific drawback in the short-wave bands: interference occurs fairly often if there is an adjacent station separated from the desired station by some-thing close to the regeneration frequency. The sound quality is often worse than with a simple regenerative receiver. However, this is offset by the absence of the need for manual feedback adjustment, which can be difficult.